Cor of Stein factorization: f: X-, Y proper f connected component of f'(y) $\stackrel{\cong}{\longleftarrow}$ f maxil ideal of $(f_0)_y$ Pf: by Stein factorization, LHS = pts of $(f_0 x)_y \otimes k(y)$. So all we need: A = bcal ring, $A \rightarrow B$ finite, then $Max(B) = Spec(B \otimes k)$. Cor. $f: X \longrightarrow Y$ preper dominant, so $k(Y) \subseteq k(X)$. $\forall y \in Y$, $\forall f \in Y$, Coc. Noeth. Lemma: $f: X \longrightarrow Y$, $bc. f. type. X^{ef} := \{x \in X \mid [x] \text{ is clopen in } f'(f(x))\}$ If $U \subseteq X$ open, then $X^{gf} \cap U = U^{gf}$. pf: WMA: Y = Spec(k) is a field. $(f'(f\infty)) \simeq X_{f\infty}$ as top space) Then $x \in X$ is loc. type/k, TFAE: if $x \in U \subseteq X$ [x) $\subseteq U$ clopen. (1) $\{x\} \subseteq X$ clopen $\{x\} \subseteq X$ clopen $\{x\} \subseteq X$ open $\{x\} \in X$ op Prop. f: X -> Y proper. (1) if $f_{*}O_{X}=O_{Y}$ (\Rightarrow) f has convide fibers) then $\chi^{gf} \leq \chi$ open $\chi^{gf} = \chi^{gf} = \chi^{gf$

f; (1) \Rightarrow (2) by Stein factorization. $f(x): \quad \chi^{3}f = \int x \in X \left\{ (x) = f'(f(x)) \right\}, \quad \text{(at } J = f(x).$ f proper $\Rightarrow ff'(V) \mid y \in V \subseteq Y form a basis of open$ while of $f'(y) = \{x\}$. $O_{Y,y} \stackrel{\cong}{\longrightarrow} (f_*O_X)_y = colim f_*O_X(V) = colim O_X(f^-(V))$ $y \in V$ $= \bigcirc_{X,x}$ So \exists affine ublds $x \in Spec(B) \subseteq X$ 5.6. for= $g \in Spec(A) \subseteq f$ D A $f^{\#}$ B f, type of Nbeth rings. 2) STA & - applied to ft becomes an isom, Exercise: show that $\exists g \in S$, s.t. $A[/g] \xrightarrow{g} B[/f^{*}(g)]$. Conclusion: we found affine ubble $x \in f'(V) \subseteq X$ s.t. $f|_{f'(V)} = Y$ In particular $O f'(V) \subseteq X^{f}$. (2) $f|_{xy} \times xy \longrightarrow y$ is injective f open map. $f|_{xy} = f|_{xy} = f|_{$

Defn: X -> Y is quasi-finite if f.type + fibers are finite. Noeth. Noeth. Thun (Chevalley): f. X - Y proper + quasi-fruite, then f is finite. of: $X = X^{gf} = f'$ is an open immension. f of finite f proper of proper.

g sep of proper.

Exercise: Those that f' has dense image. (Hence f' is an isom.). f: X -> Y birat'l, bijective, proper, Y normal. Noeth. intil Then of is an isom. f: X- Y fitype between bc. Noeth. Schung. Exercise Thm: fis a closed immersion () f is a groper monomorphism. Thm (algebraic form of Zaviski's Main Thun): A= Noeth. rilg, B= fig. A-ag. $\varphi \subseteq B$ prime, $\varphi := correp.$ prime in A. Then I g & f, a finite A-alg C, f' = C alone f, h& f' s.t. $B[/g] \cong C[/h]$ as A-ag.

open X C Ph An Spec(C) Spec(A). Stein fact. CE WH = XH n U. Exercise: fruish the of. Thin (Nagata compactification): f: X > S. Assume: S & FS.
q-c. open. (1) / proper

Then can enlarge diagram. Thm (Zariski's Main Thm): f. X Noeth. Then X open, and X open, and X open intersection of Spin - of (9c.) open / finite.

Cor: sep + g-f. = finite. open. Y Exercise: find counter example if we drop sep.